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Abstract
The classes of exact rational solutions with constant asymptotic values at infinity
of Nizhnik–Veselov–Novikov (NVN) equations via the ∂-dressing method of
Zakharov and Manakov are constructed. At fixed time such solutions are the
transparent (exactly solvable) potentials for one-dimensional Klein–Gordon or
two-dimensional stationary Schrödinger equations. Among the constructed
solutions are singular and also non-singular ones.

PACS numbers: 0340K, 0230J

1. Introduction

Over the past two decades the inverse spectral transform (IST) method has been generalized
and successfully applied for the calculations of broad classes of exact solutions of various
(2 + 1)-dimensional nonlinear evolution equations such as Kadomtsev–Petvashvili, Davey–
Stewartson, Veselov–Novikov, Zakharov–Manakov system, generalized sine–Gordon and
others (see the books [1–4] and references therein). The basic tools for solving (2 + 1)-
dimensional integrable nonlinear equations via IST are now the non-local Riemann–Hilbert
problem [5], the ∂-problem [6] and the more general and powerful ∂-dressing method of
Zakharov and Manakov [7–10] (see also the reviews [11–13] and the books [1–4]).

In the present paper the ∂-dressing method is used to construct exact rational solutions with
constant asymptotic values at infinity of the famous (2 + 1)-dimensional Nizhnik–Veselov–
Novicov (NVN) integrable equations:

Ut + κ1Uξξξ + κ2Uηηη + 3κ1(U∂
−1
ξ U)η + 3κ2(U∂

−1
η Uξ )ξ = 0 (1)

whereU(ξ, η, t) is a scalar function, κ1, κ2 are arbitrary constants, ∂ξ = ∂x+σ∂y, ∂η = ∂x−σ∂y
and σ 2 = ±1. Equation (1) was first introduced by Nizhnik [14] for σ = 1 and independently
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by Veselov and Novikov [15] for σ = i, κ1 = κ2 = 1. Here and below ∂−1
ξ , ∂−1

η denote

operators inverse to ∂ξ , ∂η : ∂−1
ξ ∂ξ = ∂−1

η ∂η = 1. The integrability of (1) by IST and by
another means is based on the representation of this equation as the compatibility condition
for two linear auxiliary problems

L1ψ = (∂2
ξη + U)ψ = 0

L2ψ = (∂t + κ1∂
3
ξ + κ2∂

3
η + 3κ1(∂

−1
ξ Uη)∂ξ + 3κ2(∂

−1
η Uξ )∂η)ψ = 0

(2)

in the form of Manakov’s triad

[L1, L2] = BL1 (3)

with

B = 3(κ1∂
−1
ξ Uηη + κ2∂

−1
η Uξξ ). (4)

The integration of the NVN equation (1) has a remarkable history. In the paper by Nizhnik
[14], equation (1) withσ = 1 was integrated using the inverse problem technique for hyperbolic
systems on the plane. In the paper by Veselov and Novikov [15] for the construction of the
periodic finite-zone exact solutions of (1) with σ = i algebraic geometric methods were used.
Finally, in the papers by Grinevich and Manakov [16], Grinevich and Novikov [17, 18] for the
integration of (1) with σ = i and for potentials which decay quickly at infinity, an IST based
on a combination of some non-local Riemann–Hilbert problem and the ∂-problem has been
developed. More detailed information about all known cases of exact integrations of (1) (early
history) can be found in the book [3]. Let us also mention that for the calculation of exact
solutions of (1) the methods of Darbu and Bäcklund transformations have been used [19].

In our paper the ∂-method corresponds to bare operators of linear auxiliary problems (2)
with a constant asymptotic value of U at infinity,

U(ξ, η, t) := Ũ (ξ, η, t)− ε U(ξ, η, t) −−−−−→
x2+y2−→∞

−ε �= 0. (5)

In this case the first linear auxiliary problem (1.2) has the form

(∂2
ξη + Ũ )ψ = εψ. (6)

For σ = 1 (6) can be interpreted (ξ ⇒ t − x, η ⇒ t + y) as the one-dimensional Klein–
Gordon or perturbed telegraph equation, for σ = i (6) is nothing but the two-dimensional
(2D) stationary Schrödinger equation. The construction of exact solutions of (1) with constant
asymptotic values at infinity means simultaneously the calculation of exact eigenfunctions (or
wavefunctions, in the terminology of quantum mechanics)ψ and exactly solvable (transparent)
corresponding potentials Ũ for the above-mentioned classical linear equations.

In our opinion, the use of the celebrated ∂-method of Zakharov and Manakov for the
construction of new exact solutions for NVN equations (1) is very instructive and useful. In
the case σ = i our results partially agree with those obtained by different methods in the
papers by Grinevich and Novikov [17, 18]. We shall calculate the solutions corresponding
to the simple poles of the wavefunction. The study of multiple-pole solutions for the NVN
equation is in progress and will be considered elsewhere.

The paper is organized as follows. In section 2 the basic ingredients of the ∂-dressing
method for the NVN equation (1) are considered. The general formulae for rational solutions
corresponding to a factorized delta-kernel R of the ∂-problem are obtained at the end of
section 2. The rational solutions of NVN equations (1) in the Nizhnik case (σ = 1) and the
Veselov–Novikov case (σ = i) are calculated in sections 3 and 4, respectively.
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2. Basic formulae of the ∂-dressing method

Let us apply the ∂-dressing method [7–10] for equation (1) in the case when U(ξ, η, t) has
generically a non-zero asymptotic value at infinity:

U(ξ, η, t) = Ũ (ξ, η, t) + U∞ = Ũ (ξ, η, t)− ε (7)

where Ũ (ξ, η, t) −→ 0 as ξ 2 + η2 → ∞. At first one postulates the non-local ∂-problem
[7, 13]:

∂χ

∂λ
= (χ ∗ R)(λ, λ) =

∫ ∫
dµ ∧ dµ χ(µ,µ)R(µ,µ; λ, λ) (8)

where in our case χ and R are the scalar complex-valued functions. For the function χ we
choose the canonical normalization: χ −→ 1 as λ → ∞. We also assume that the problem
(8) is uniquely solvable.

Then one introduces the dependence of kernel R of the ∂-problem (8) on the space and
time variables ξ, η, t [7, 13]:
∂R

∂ξ
= iµR(µ,µ; λ, λ; ξ, η, t)− R(µ,µ; λ, λ; ξ, η, t) iλ

∂R

∂η
= −i

ε

µ
R(µ,µ; λ, λ; ξ, η, t) + R(µ,µ; λ, λ; ξ, η, t) i

ε

λ
(9)

∂R

∂t
= i

(
κ1µ

3 − κ2
ε3

µ3

)
R(µ,µ; λ, λ; ξ, η, t)− R(µ,µ; λ, λ; ξ, η, t) i

(
κ1λ

3 − κ2
ε3

λ3

)
i.e.

R(µ,µ; λ, λ; ξ, η, t) = R0(µ,µ; λ, λ) eF(µ)−F(λ) (10)

where

F(λ) := i

(
λξ − ε

λ
η

)
− i

(
κ1λ

3 − κ2
ε3

λ3

)
t. (11)

With the use of ‘long’ derivatives

D1 = ∂ξ + iλ D2 = ∂η − i
ε

λ
D3 = ∂t + i

(
κ1λ

3 − κ2
ε3

λ3

)
(12)

the dependence (9) of kernel R of the ∂-problem (8) on ξ, η, t can be expressed in the form:

[D1, R] = 0 [D2, R] = 0 [D3, R] = 0. (13)

With the use of derivatives (12) one can then construct the linear operators

L =
∑
lmn

Ulmn(ξ, η, t)D
l
1D

m
2 D

n
3 (14)

which satisfy the condition[
∂

∂λ
, L

]
= 0 (15)

for absence of singularities on λ. For such operators L the function Lχ obeys the same ∂-
equation as the function χ . If there are several operators Li of this type, then by virtue of the
unique solvability of (8) one has Liχ = 0. In our case one can construct two such operators:

L1χ = (D1D2 + V1D1 + V2D2 + U)χ = 0

L2χ = (D3 + κ1D
3
1 + κ2D

3
2 + W1D

2
1 + W2D

2
2 + W3D1 + W4D2 + W)χ = 0.

(16)
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Indeed, let us consider (16) for the series expansions of χ near the points λ = 0 and

λ = ∞: χ = χ̃0 + λχ1 + · · · χ = χ0 + χ−1/λ + · · · .
In the neighbourhood of λ = ∞, equating to zero the coefficients for degrees of λ, we obtain
from L1χ = 0

λ: iχ0η + iV1χ0 = 0

λ0: χ0ξη + iχ−1η + εχ0 + V1χ0ξ + V2χ0η + Uχ0 = 0 (17)

λ−1: χ−1ξη − iεχ0ξ + iχ−2η + εχ−1 + V2χ−1η − iεV2χ0 + Uχ−1 = 0

and from L2χ = 0

λ2: −3κ1χ0ξ −W1χ0 = 0

λ1: 3iκ1χ0ξξ − 3κ1χ−1ξ + 2iW1χ0ξ −W1χ−1 + iW4χ0 = 0

λ0: χ0t + κ1χ0ξξξ + 3iκ1χ−1ξξ − 3κ1χ−2ξ + κ2χ0ηηη + W1χ0ξξ + 2iW1χ−1ξ

−W1χ−2 + W3χ0η + W4χ0ξ + iW4χ−1 + Wχ0 = 0.

(18)

Analogously, in the neighbourhood of λ = 0 from L1χ = 0

λ−1: −iεχ̃0ξ − iV2εχ̃0 = 0

λ0: χ̃0ξη − iεχ1ξ + εχ̃0 + V2χ̃0η − iεV2χ1 + Uχ̃0 = 0
(19)

and from L2χ = 0

λ−2: −3κ2ε
2χ̃0η − ε2W2χ̃0 = 0

λ−1: −3iκ2εχ̃0ηη − 3κ2ε
2χ1η − 2iεW2χ̃0η − ε2W2χ1 − iεW3χ̃0 = 0.

(20)

Due to canonical normalization χ0 = 1 and from (17) and (18) it follows for V1 and W1:
V1 = W1 = 0. Then from (19) and (20) we obtain for V2 and W2 the following reconstruction
formulae:

V2 = − χ̃0ξ

χ̃0
W2 = −3κ2

χ̃0η

χ̃0
. (21)

Imposing on the operator L1 in (16) the condition of potentiality V2 = 0 satisfying for
χ̃0 = constant, say χ̃0 = 1, we have from (21)

V2 = W2 = 0. (22)

Let us mention that in the well known terminology the operator L1 in (16) is a pure potential
operator if the terms with the first derivatives in it are absent. For this reason the condition
V2 = 0 or equivalently χ̃0 = constant will be called here the condition of potentiality of
operator L1.

Then from (17)–(22) one obtains the reconstruction formulae for U , W3 and W4:

U = −ε − iχ−1η = −ε + iεχ1ξ

W4 = −3iκ1χ−1ξ = 3κ1∂
−1
η Uξ W3 = 3iκ2εχ1η = 3κ2∂

−1
ξ Uη.

(23)

And finally using the last relations from (17), (18) and (23) one obtains the expression for W:

W = −3iκ1χ−1ξξ + 3κ1χ−2ξ − iW4χ−1 ≡ 0. (24)
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In terms of the wavefunction

ψ := χ exp

[
i

(
λξ − ε

λ
η

)
− i

(
κ1λ

3 − κ2
ε3

λ3

)
t

]
(25)

under the reduction V2 = 0 (the condition of potentiality L1) one obtains from (16) due to
(22)–(25) the linear auxiliary system

L1ψ = (∂2
ξη + Ũ − ε)ψ = (∂2

ξη + U)ψ = 0

L2ψ = (∂t + κ1∂
3
ξ + κ2∂

3
η + 3κ1(∂

−1
η Uξ )∂η + 3κ2(∂

−1
ξ Uη)∂ξ )ψ = 0

(26)

which exactly coincides with the system (2). The compatibility conditions (3) for the system
(26) is nothing but the NVN equation (1) for the function U with constant asymptotic value
−ε at infinity.

The solution of the ∂-problem (8) with canonical normalization χ0 = 1 is equivalent to
the solution of the following singular integral equation:

χ(λ) = 1 +
∫ ∫

C

dλ′ ∧ dλ′

2π i(λ′ − λ)

∫ ∫
C

dµ ∧ dµ χ(µ,µ)R0(µ,µ; λ′, λ′) eF(µ)−F(λ
′). (27)

From (27) one obtains for the coefficients χ̃0 and χ−1 of the series expansions of χ :

χ̃0 = 1 +
∫ ∫

C

dλ ∧ dλ

2π iλ

∫ ∫
C

dµ ∧ dµ χ(µ,µ)R0(µ,µ; λ, λ) eF(µ)−F(λ) (28)

and

χ−1 = −
∫ ∫

C

dλ ∧ dλ

2π i

∫ ∫
C

dµ ∧ dµ χ(µ,µ)R0(µ,µ; λ, λ) eF(µ)−F(λ) (29)

where F(λ) is given by formula (11).
The conditions of reality U and of potentiality of the operator L1 give some restrictions

on the kernel R0 of the ∂-problem (8). In the Nizhnik case (σ = 1) of NVN equations (1)
with real ξ = x + y, η = x − y space variables and κ1 = κ1, κ2 = κ2 the condition of reality
of U leads from (11), (23) and (29) in the limit of weak fields to the following restriction on
the kernel R0 of the ∂-problem:

R0(µ,µ; λ, λ) = R0(−µ,−µ; −λ,−λ). (30)

To the Veselov–Novikov case (σ = i, κ1 = κ2 = κ = κ) of NVN equations (1) with
z = ξ = x + iy, z = η = x − iy the condition of reality of U leads from (11), (23) and
(29) in the limit of weak fields to another restriction on the kernel R0 of ∂-problem:

R0(µ,µ; λ, λ) = ε

|µ|2|λ|2µλ R0

(
− ε

λ
,− ε

λ
,− ε

µ
,− ε

µ

)
. (31)

The potentiality condition for the operator L1 in (26) means V2 = 0 or due to (21)
χ̃0 = constant, say χ̃0 = 1, and according to (28) has the form∫ ∫

C

dλ ∧ dλ

λ

∫ ∫
C

dµ ∧ dµ χ(µ,µ)R0(µ,µ; λ, λ) eF(µ)−F(λ) = 0. (32)

Various choices for the kernel R of the ∂-problem (8) satisfying restrictions (30)–(32) lead to
various classes of exact solutions of integrable nonlinear NVN equations (1).
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In conclusion of this section, let us obtain some useful general formulae for calculations
of rational solutions of NVN equations (1). From such types of solutions leads for example
the following delta-kernel R0(µ,µ; λ, λ) of the ∂-problem:

R0(µ,µ; λ, λ) = π

2

∑
p

Ãp δ(µ−%p) δ(λ−%p). (33)

Here for simplicity we choose Ãp as some complex constants, δ(µ−%p) and δ(λ−%p) are
the complex δ-function. %1,%2, . . . is some set of isolated points distinct from the origin.
The main problem in constructing rational solutions is the problem of the choice of the set of
points %p and constants Ãp in order to satisfy the conditions of reality and potentiality. Using
(33) in (28) and (29) one obtains for χ̃0 and χ−1 the expressions

χ̃0 = 1 +
∑
p

Ãp

%p

χ(%p) χ−1 = −i
∑
p

Ãp χ(%p). (34)

For the quantities χ(%p) from integral equation (27) follows a simple algebraic system of
equations: ∑

p

Apq χ(%q) = 1 (35)

where matrix Apq has the form

Apq = δpq(1 + i ÃpF
′(%p)) +

i Ãq(1 − δpq)

%p −%q

. (36)

Using the fact ∂Apq/∂ξ = −Ãpδpq one obtains from (23) and (34) the simple determinantal
formula for rational solutions of NVN equations (1):

U(ξ, η, t) = −ε + ∂2
ξη ln(detA). (37)

The condition of potentiality (χ̃0 = 1) due to (34) for solutions with kernel R0 (33) has the
form ∑

p

Ãp

%p

χ(%p) =
∑
p,q

Ãp

%p

A−1
pq = 0. (38)

3. Rational solutions of NVN equation at σ = 1

For the Nizhnik version (σ = 1) of NVN equations (1) with κ1 = κ1, κ2 = κ2 to the reality
condition (30) satisfies, for example, following kernel R0 of the ∂-problem (8):

R0(µ,µ; λ, λ) = π

2

∑
k

[Ak δ(µ− λk) δ(λ− λk) + Ak δ(µ + λk) δ(λ + λk)] (39)

with N pairs of real (λk = λk) points (λk,−λk) arranged symmetrically near the origin on
the real axis on the complex plane. Aκ are some complex constants which must be chosen
appropriately in order to satisfy the condition of potentiality (32) or (38). It is convenient to
rewrite the kernel R0 in a more compact form of the type (33), where the sets Ã and % are
introduced by the formulae

Ã := (A1, A1, . . . , AN,AN) % := (λ1,−λ1, . . . , λN,−λN). (40)



The construction of exact rational solutions via the ∂-dressing method 1843

One can show that the condition of potentiality (38) satisfies for the following choice of Ak in
(39):

1

Ak

− 1

Ak

= i

λk
. (41)

It follows from (41) that

1

Ak

= ak − i

2λk

1

Ak

= ak +
i

2λk
κ = 1, . . . , N (42)

where ak are arbitrary real constants. Equivalently, in terms of the sets Ã and %, one has from
(42):

1

Ãp

= a[(p+1)/2] − i

2%p

(43)

where [(p + 1)/2] denotes the entire part of (p + 1)/2. The matrix (36) due to (11) and (43)
has the form

Apq =
[(

− i

2%p

−X(%p)

)
δpq +

i(1 − δpq)

%p −%q

]
Ãq (p, q = 1, . . . , 2N) (44)

where

X(%p) = ξ +
ε

%2
p

η + 3

(
κ1%

2
p + κ2

ε3

%4
p

)
t − a[(p+1)/2] (45)

and rational solutions corresponding to the kernelR0 of the type (39) are given by formula (37)
with matrix Apq (44). All such solutions are evidently singular.

In the simplest caseN = 1 (%1,%2) = (λ1,−λ1),X(±λ1) = X(λ1) it follows from (44)

Apq =


A1

(
− i

2λ1
−X(λ1)

)
iA1

2λ1

− iA1

2λ1
A1

(
i

2λ1
−X(λ1)

)
. (46)

For the solution (37) one obtains in this case a very simple formula,

U = −ε − 2ε/λ2
1

X(λ1)2
. (47)

This solution has a singularity along the line X(λ1) = 0. Such a line singularity, of second-
order pole type, propagates in the plane (ξ, η) with speed

| �V | = [3κ1λ
2
1 + 3κ2ε

3/λ4
1]/
√

1 + ε2/λ4
1.

The general solution (37) is the superposition of such simple solutions (47) with second-order
pole-type singularities which interact with each other elastically.

Another simple delta-kernel R0 of the ∂-problem (8) satisfying the reality condition (30)
has the form

R0(µ,µ; λ, λ) = π

2

N∑
k=1

[Ak δ(µ− iαk) δ(λ− iαk) + Bk δ(µ + iαk) δ(λ + iαk)] (48)

with N pairs of pure imaginary points (iαk,−iαk), αk = αk , arranged symmetrically near the
origin on the imaginary axis on the complex plane. Here Ak = Ak , Bk = Bk are some real
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constants which must be chosen appropriately in order to satisfy the potentiality condition (32)
or (38). It is convenient to rewrite the kernel R0 (48) in a general compact form of the type
(33), where the sets Ã and % are introduced by the formulae

Ã := (A1, B1, . . . , AN, BN) % := (iα1,−iα1, . . . , iαN,−iαN). (49)

One can show that in this case the potentiality condition (38) is satisfied for the following
choice of Ak and Bk in (48):

1

Bk

− 1

Ak

= 1

αk
. (50)

It follows from (50) that 1/Ak = ak − 1/(2αk), 1/Bk = ak + 1/(2αk) with arbitrary real
constants ak , in terms of the sets Ã and % the last relations take the form:

1

Ãp

= a[(p+1)/2] − i

2%p

p = 1, . . . , 2N. (51)

The rational solutions have the simple determinantal form (37) with the following matrix A:

Apq =
[(

− i

2%p

−X(%p)

)
δpq +

i(1 − δpq)

%p −%q

]
Aq (p, q = 1, . . . , 2N) (52)

where

X(%p) = ξ +
ε

%2
p

η + 3

(
κ1%

2
p + κ2

ε3

%4
p

)
t − ãp (53)

and the constants ãp belong to the set ã = (̃a1, ã2, . . . , ã2N) := (a1, a1, . . . , aN , aN).
In the simplest case N = 1,% = (iα1,−iα1) one obtains from (52),

Apq =


A1

(
− 1

2α1
−X(iα1)

)
B1

2α1

− A1

2α1
B1

(
1

2α1
−X(iα1)

)
 (54)

and

U(ξ, η, t) = −ε +
2ε/α2

1

(ξ − (ε/α2
1) η − 3(κ1α

2
1 − κ2ε3/α4

1)t − a1)2
. (55)

This solution also has second-order pole-type line singularity and the general formula (37) gives
the superposition of such simple solutions as (55) which interact which each other elastically.

As a product our procedure allows one to also calculate the eigenfunctions—exact
solutions of the linear auxiliary problems (2) and, in particular, of the classical Klein–Gordon
equation (6). For the eigenfunctions satisfying this equation one can choose due to (25) the
following expressions:

ψ(ξ, η, t) = χ(%p) eF(%P ) p = 1, . . . , 2N (56)

or

ψ(ξ, η, t) = χ(λ) eF(λ) p = 1, . . . , 2N (57)

whereχ(λ) satisfies equation (27) andχ(%p) satisfies the system (35). As exact eigenfunctions
of linear problems one can also choose arbitrary linear combinations of those defined in (56)
and/or in (57). In the above two considered simplest cases (39) and (48) of the kernel R0 with
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the eigenfunctions satisfying the Klein–Gordon equation (6), one can choose, for example, the
form

ψ = exp[±i(λ1ξ − (ε/λ1)η + (κ1λ
3
1 − κ2ε

3/λ3
1)t)]

ξ + (ε/λ2
1) η + 3(κ1λ

2
1 + κ2ε3/λ4

1)t − a1
(58)

ψ = exp[±(α1ξ + (ε/α1)η − (κ1α
3
1 − κ2ε

3/α3
1)t)]

ξ − (ε/α2
1) η − 3(κ1α

2
1 − κ2ε3/α4

1)t − a1
(59)

for the first (λ1-real) and second (iα1-pure imaginary) cases, respectively.
In the above two studied examples (39) and (48) of kernelR0, the corresponding solutions

of equation (1) and the eigenfunctions ψ are singular. In order to construct non-singular
rational solutions one must choose a more complicated set % = (%1,%2, . . .) of points of
non-zero values of R0 on the complex plane. The idea of choosing such a kernel is very
simple. One starts with two terms Ak δ(µ − λk) δ(λ − λk) + Bk δ(µ + λk) δ(λ + λk) in R0

having non-zero values at two complex points λk and −λk . Then ‘the continuation by reality
condition’ (30) gives another two terms Ak δ(µ + λk) δ(λ + λk) + Bk δ(µ − λk) δ(λ − λk) of
the kernel R0. So let us consider a delta-kernel R0, more general than (39) and (48) satisfying
the reality condition (30):

R0(µ,µ; λ, λ) = π

2

N∑
k=1

[Ak δ(µ− λk) δ(λ− λk) + Ak δ(µ + λk) δ(λ + λk)

+Bk δ(µ + λk) δ(λ + λk) + Bk δ(µ− λk) δ(λ− λk)] (60)

with N quartets of complex points (λk,−λk,−λk, λk) arranged symmetrically near the origin
on the complex plane. Evidently (39) and (48) are two degenerate particular cases of (60). The
constants Ak and Bk in (60) must be chosen appropriately in order to satisfy the potentiality
condition (32) (or (38)). It is convenient to rewrite the kernel (60) in the general compact form
of the type (33) with the sets Ã and % being given by the formulae

Ã := (A1, A1, B1, B1; · · · ;AN,AN,BN,BN)

% := (λ1,−λ1,−λ1, λ1; · · · ; λN,−λN,−λN, λN).
(61)

Some lengthy calculations show that the condition of potentiality (38) for the kernel (60) is
satisfied for the following choice of the constants Ak and Bk in (60):

1

Bk

− 1

Ak

= i

λk
(62)

It follows from (62) that 1/Ak = ak − i/(2λk), 1/Bk = ak + i/(2λk), with arbitrary complex
constants ak . Equivalently, in terms of the sets Ã and % defined in (61) and the set ã defined
by the formula

ã := (̃a1, ã2, . . . , ã4N) := (a1, a1, a1, a1; · · · ; aN, aN, aN, aN) (63)

from (62) follow the relations

1

Ãp

= ãp − i

2%p

. (64)

The rational solutions U corresponding to the kernel R0 of the type (60) have the general
determinantal form (37) with matrix A,

Apq =
[(

− i

2%p

−X(%p)

)
δpq +

i(1 − δpq)

%p −%q

]
Ãq (p, q = 1, . . . , 4N) (65)
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where

X(%p) = ξ +
ε

%2
p

η + 3

(
κ1%

2
p + κ2

ε3

%4
p

)
t − ãp. (66)

In the simplest case N = 1 and % = (λ1,−λ1,−λ1, λ1) the calculations using (65) and
(66) lead to the following expression for detA:

detA = |A1|2|B1|2
[
|X(λ1)|2 +

1

4

(
1

λ2
1I

− 1

λ2
1R

)]2

. (67)

Using (37) and (67) for the solution U(ξ, η, t) one obtains the formula

U(ξ, η, t) = −ε − 2ε
(λ1X(λ1))

2 + (λ1X(λ1))
2 − 1/2(λ2

1I − λ2
1R)

2/(λ2
1I λ

2
1R)

(|λ1X(λ1)|2 + (|λ1|2/4)(1/λ2
1I − 1/λ2

1R))
2

. (68)

The solution (68) is evidently non-singular for |λ1I | < |λ1R| and represents a localized lump
decreasing at infinity to −ε rationally (as (ξ 2 + η2)−1) and moving on the plane ξ, η with
constant velocity.

4. Rational solutions of NVN equation at σ = i

Quite analogously to the case σ = 1 of the previous section one can study the Veselov–
Novikov version of the NVN equations (1) with σ = i. For this case with the assumption
κ1 = κ2 = κ to the reality condition (31) satisfies, for example, the following delta-kernel R0

of the ∂-problem (8):

R0(µ,µ; λ, λ) = π

2

N∑
k=1

[
Ak δ(µ− λk) δ(λ− λk) +

ε3Ak

|µ|2|λ|2µλ δ
(
ε

µ
+ λk

)
δ

(
ε

λ
+ λk

)]

= π

2

N∑
k=1

[
Ak δ(µ− λk) δ(λ− λk) +

εAk

λ
2
k

δ

(
µ +

ε

λk

)
δ

(
λ +

ε

λk

)]
. (69)

Let us impose an additional restriction on the points λk:
ε

λk
= λk ε = |λk|2 > 0. (70)

For the kernel R0 (69) then follows a simpler expression:

R0(µ,µ; λ, λ) = π

2

N∑
k=1

[
Ak δ(µ− λk) δ(λ− λk) +

Akλk

λk
δ(µ + λk) δ(λ + λk)

]
(71)

with N pairs of complex points (λk,−λk) arranged symmetrically near the origin on the
complex plane. Ak in (71) are some complex constants which must be chosen appropriately in
order to satisfy the potentiality condition (32) (or (38)). It is convenient to rewrite the kernel
R0 in a more compact form of the type (33) with the sets Ã and % introduced by the formulae

Ã := (A1, λ1A1/λ1, A2, λ2A2/λ2, . . . , AN, λNAN/λN, )

% := (λ1,−λ1, λ2,−λ2, . . . , λN,−λN)
(72)

and λk satisfies the condition (70). One can show that the condition of potentiality (32) for
the kernel (71) is satisfied for the following choice of the constants Ak and Bk := λkAk/λk in
(71):

1

Bk

− 1

Ak

= i

λk
. (73)
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It follows from (73) that

1

Ak

= ak − i

2λk

1

Bk

= ak +
i

2λk
(74)

with complex constants ak satisfying (due to the definition Bk := λkAk/λk) the condition
akλk/λk = ak . Equivalently, in terms of the sets Ã, % (72) and ã defined by the formula

ã := (̃a1, ã2, . . . , ã2N) := (a1, a1, a2, a2; · · · ; aN, aN) (75)

the relations (74) can be rewritten in the form

1

Ãp

= ãp − i

2%p

(p = 1, . . . , 2N). (76)

Matrix Apq due to (11) and (76) has the form

Apq =
[(

− i

2%p

−X(%p)

)
δpq +

i(1 − δpq)

%p −%q

]
Ãq (p, q = 1, . . . , 2N) (77)

where the quantities

%pX(%p) := z%p +
ε

%p

z + 3

(
κ%3

p + κ
ε3

%3
p

)
t −%pãp (78)

due to the relations (70) and akλk/λk = ak are real. Rational solutions corresponding to the
kernel R0 of the type (71) are given by the general formula (37) with ξ = z = x + iy, η = z =
x − iy:

U(z, z, t) = −ε +
∂2

∂z∂z
ln detA. (79)

In the simplest case N = 1 and (%1,%2) = (λ1,−λ1) one obtains from (77)

Apq =


A1

(
− i

2λ1
−X(λ1)

)
iA1

2λ1

− iA1

2λ1

λ1A1

λ1

(
i

2λ1
−X(λ1)

)
 detA = |A1|2λ1

λ1
X2(λ1)

(80)

where due to (70) and (78) λ1X(λ1) := λ1z + λ1z + 3(κλ3
1 + κλ

3
1)t − a1λ1. For the solution

(79) one obtains in this case a very simple formula:

U(z, z, t) = −ε − 2|λ1|2
(λ1z + λ1z + 3(κλ3

1 + κλ1
3
)t − a1λ1)2

. (81)

The corresponding wavefunction ψ(z, z, t) of the 2D stationary Schrödinger equation (6) is

ψzz + Ũ (z, z)ψ = εψ (82)

one can choose due to (25), for example, the form

ψ = exp[±i(λ1z− λ1z + 3(κλ3
1 − κλ1

3
)t)]

λ1z + λ1z + 3(κλ3
1 + κλ1

3
)t − a1λ1

. (83)

The solution (81) and wavefunction (83) are singular with the singularity along the line
X(λ1) = 0 on the plane (x, y). Singularity in (83) is of second-order pole type and
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propagates in the plane (x, y) with some constant velocity. A more general solution (79) is
the superposition of such simple line singular solutions and also is singular. The wavefunction
(83) due to a real argument in the exponent has a non-oscillating character.

One can obtain another simple delta-kernel R0 satisfying the reality condition (32) in the
following way. One starts from the simple termR0 = Ak δ(µ−λk) δ(λ−λk), ‘the continuation
by reality condition’ (31) adds to it the following part:

ε3Ak

|µ|2|λ|2µλ δ
(

− ε

µ
− λk

)
δ

(
− ε

λ
− λk

)
= εAk

λ
2
k

δ

(
µ +

ε

λk

)
δ

(
λ +

ε

λk

)
. (84)

Then as opposed to (70) let us impose another additional restriction on the points λk:
ε

λk
= −λk ε = −|λk|2 � 0. (85)

Due to (85) one obtains from (84) the term −(Akλk/λk) δ(µ−λk) δ(λ−λk)which reproduces
the initial one if the condition Akλk/λk = −Ak is fulfilled. The above observation leads to the
following (different from (71)) choice of the delta-kernel R0 satisfying the reality condition
(31):

R0(µ,µ; λ, λ) = π

2

N∑
k=1

[Ak δ(µ− λk) δ(λ− λk) + Bk δ(µ + λk) δ(λ + λk)]. (86)

This kernel has non-zero values atN pairs of complex points (λk,−λk) arranged symmetrically
near the origin of the complex plane. In (86) the conditions (85) for the points λk and the
conditions

Akλk/λk = −Ak Bkλk/λk = −Bk (87)

for constants Ak, Bk must be fulfilled. It is convenient to rewrite the kernel R0 in a more
compact form of the type (33) with the sets Ã and % being introduced by the formulae

Ã = (A1, . . . , A2N) := (A1, B1, A2, B2, . . . , AN, BN)

% := (λ1,−λ1, λ2,−λ2, . . . , λN,−λN).
(88)

One can show that the condition of potentiality (38) is satisfied for the following further
restrictions on constants Ak and Bk:

1

Bk

− 1

Ak

= i

λk
. (89)

From (89) one obtains

1

Ak

= ak − i

2λk

1

Bk

= ak +
i

2λk
(90)

where due to (87) the complex constants ak satisfy the condition

akλk/λk = −ak. (91)

Equivalently, in terms of the sets Ã, % (88) and ã given by the formula

ã := (̃a1, ã2, . . . , ã2N) := (a1, a1, a2, a2; · · · ; aN, aN) (92)

the relations (90) can be rewritten in the form

1

Ãp

= ãp − i

2%p

(p = 1, . . . , 2N). (93)
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Matrix Apq due to (11) and (93) has the form

Apq =
[(

− i

2%p

− iX(%p)

)
δpq +

i(1 − δpq)

%p −%q

]
Ãq (p, q = 1, . . . , 2N) (94)

where the quantities

%pX(%p) := −i

(
z%p +

ε

%p

z + 3

(
κ%3

p + κ
ε3

%3
p

)
t

)
+ i%pãp (95)

due to (85) and (91) are real. Rational solutions corresponding to the kernel R0 of the type
(86) are given by the general formula (79) with the matrix Apq (94).

In the simplest case N = 1 and % = (λ1,−λ1) it follows from (94):

Apq =


A1

(
− i

2λ1
− iX(λ1)

)
iB1

2λ1

− iA1

2λ1
B1

(
i

2λ1
− iX(λ1)

)
 detA = −A1B1

λ2
1

λ2
1X

2(λ1)

(96)

where due to (87) the quantity A1B1/λ
2
1 is real and λ1X(λ1) := −i(λ1z − λ1z + 3(κλ3

1 −
κλ

3
1)t − a1λ1). For the solution (79) one obtains in this case a very simple formula:

U(z, z, t) = −ε +
|λ1|2

(λ1z− λ1z + 3(κλ3
1 − κλ1

3
)t − a1λ1)2

. (97)

The corresponding wavefunction ψ(z, z, t) of the 2D stationary Schrödinger equation (6)

ψzz + Ũ (z, z)ψ = εψ (98)

one can choose (due to (25)) in the form

ψ = i exp(±i(λ1z + λ1z + 3(κλ3
1 + κλ1

3
)t))

λ1z− λ1z + 3(κλ3
1 − κλ1

3
)t − a1λ1

. (99)

The solution (97) and wavefunction (99) are singular with the singularity along the line
X(λ1) = 0 on the plane (x, y). The singularity in (97) is of second-order pole type and
propagates in the plane (x, y)with some constant velocity. A more general solution (79) is the
superposition of such a simple line singular solutions and is also singular. The wavefunction
(99) due to the pure imaginary argument of the exponent has an oscillating character.

In the above studied two examples (71) and (86) of kernel R0 the corresponding solution
of equation (1) and the wavefunctions ψ of the linear auxiliary problems are singular. In
order to construct a non-singular rational solution one must choose a more complicated set
% = (%1,%2, . . .) of points of non-zero values ofR0 on the complex plane. As in the previous
section one starts with two terms Ak δ(µ−λk) δ(λ−λk)+Bk δ(µ+λk) δ(λ+λk) in R0 having
non-zero values at two complex points λk,−λk . Then ‘the continuation by reality condition’

(31) gives another two terms (Akε/λ
2
k) δ(µ + ε/λk) δ(λ + ε/λk) + Bkε/λ

2
k δ(µ− ε/λk) δ(λ−

ε/λk) of the kernel R0 which are needed to satisfy the reality condition apart from the initial
two. So let us consider a delta-kernelR0 more general than (71) and (86) ,satisfying the reality
condition (31):

R0(µ,µ; λ, λ) = π

2

N∑
k=1

[
Ak δ(µ− λk) δ(λ− λk) +

Akε

λ
2
k

δ

(
µ +

ε

λk

)
δ

(
λ +

ε

λk

)

+Bk δ(µ + λk) δ(λ + λk) +
Bkε

λ
2
k

δ

(
µ− ε

λk

)
δ

(
λ− ε

λk

)]
(100)
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which has non-zero values on the complex plane at N quartets of complex points

(λk,−ε/λk − λk, ε/λk)

arranged symmetrically near the origin on the complex plane and going to each other by
inversion relative to the origin and/or to the circle of radius

√|ε|. It is convenient to rewrite
the kernel (100) in a more compact form of the type (33) with the sets Ã end % introduced by
the formulae:

Ã := (A1, εA1/λ
2
1, B1, εB1/λ1; . . . ; AN, εAN/λ

2
N, BN, εBN/λN)

% := (λ1,−ε/λ1,−λ1, ε/λ1; · · · ; λN,−ε/λN,−λN, ε/λN).
(101)

Some lengthy calculations show that the condition of potentiality (38) for the kernel (100) is
satisfied for the following choice of the constants Ak and Bk in (100):

1

Bk

− 1

Ak

= i

λk
k = 1, . . . , N. (102)

It follows from (102) that

1

Ak

= ak − i

2λk

1

Bk

= ak +
i

2λk
(103)

with arbitrary complex constants ak . In terms of the sets Ã, % (101) and the set ã defined by
the formula

ã := (̃a1, ã2, . . . , ã4N) := (a1, a1λ
2
1/ε, a1, a1λ

2
1/ε; · · · ; aN, aNλ2

N/ε, aN, aNλ
2
N/ε) (104)

the relations (103) can be rewritten in the form

1

Ãp

= ãp − i

2%p

(p = 1, . . . , 4N). (105)

The rational solutions U corresponding to the kernel R0 (100) have the general determinantal
form (79):

U(z, z, t) = −ε +
∂2

∂z∂z
(ln detA) (106)

with matrix A

Apq =
[(

− i

2%p

−X(%p)

)
δpq +

i(1 − δpq)

%p −%q

]
Ãq (p, q = 1, . . . , 4N) (107)

where

X(%p) := z +
ε

%2
p

z + 3

(
κ%2

p + κ
ε3

%4
p

)
t − ãp. (108)

In the simplest case of one quartet of complex points (λ1,−ε/λ1,−λ1, ε/λ1) one has from
(106) the following expression for detA:

detA = |A1|2|B1|2
(

|X(λ1)|2 − 2ε(ε2 + |λ1|4)
(ε2 − |λ1|4)2

)2

. (109)

Using (79) and (108) for the solution U(z, z, t) one obtains the formula

U(z, z, t) = −ε − 2ε
λ2

1X(λ1)
2 + λ

2
1X(λ1)

2 + 2[(ε2 + |λ1|4)2/(ε2 − |λ1|4)2](|λ1X(λ1)|2 − [2ε |λ1|2(ε2 + |λ1|4)/(ε2 − |λ1|4)2]
)2 . (110)

This solution evidently is non-singular for ε < 0 and represents a localized lump decreasing
at infinity to −ε rationally (as |z|−2) and moving on the plane x, y with constant velocity.
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